Rumus-rumus Matematika

claudiakatamona.blogspot.com

This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Kamis, 30 Oktober 2014

Materi Matematika SMP Kelas VII

Sifat-Sifat Penjumlahan Bilangan Bulat


Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan Mafia Online sebelumnya yang berjudul “Operasi penjumlahan bilangan bulat”. Pada postingan ini tidak dibahas lagi mengenai operasi penjumlahan bilangan bulat melainkan sifat-sifat operasi penjumlahan pada bilangan bulat.

Pada penjumlahan bilangan bulat kita akan mengenal lima sifat yakni sifat tertutup, sifat komutatif (pertukaran), mempunyai unsur identitias, sifat asosiatif (pengelompokan), dan mempunyai invers. Untuk penjelasan masing-masing silahkan simak di bawah ini.

Sifat Tertutup

Sifat tertutup maksudnya bahwa pada penjumlahan bilangan bulat, akan selalu menghasilkan bilangan bulat juga. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan bulat a dan b, berlaku a + b = c dengan c juga bilangan bulat”.

Untuk lebih memantapkan pemahaman Anda tentang sifat tertutup pada penjumlahan bilangan bulat, silahkan simak contoh soal di bawah ini.

Contoh Soal 1

a. –7 + 15 = 8
di mana kita ketahui bahwa –7 dan 15 merupakan bilangan bulat dan 8 juga merupakan bilangan bulat.

b. 18 + (–8) = 10
Kita ketahui bahwa bilangan 18 dan –8 merupakan bilangan bulat dan bilangan 10 juga merupakan bilangan bulat.

Sifat Komutatif (Pertukaran)

Penjumlahan dua bilangan bulat selalu diperoleh hasil yang sama walaupun kedua bilangan tersebut dipertukarkan tempatnya. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan bulat a dan b, selalu berlaku a + b = b + a”.
Sifat-Sifat Penjumlahan Bilangan Bulat
sifat komutatif pada penjumlahan bilangan bulat

Untuk lebih memantapkan pemahaman Anda tentang sifat komutatif (pertukaran) pada penjumlahan bilangan bulat, silahkan simak contoh soal di bawah ini.

Contoh Soal 2

a. 2 + 8 = 8 + 2 = 10
b. (–5) + 4 = 4 + (–5) = –1
c. 6 + (–10) = (–10) + 6 = –4
d. (–11) + (–12) = (–12) + (–11) = –23

Mempunyai Unsur Identitas

Bilangan 0 (nol) merupakan unsur identitas pada penjumlahan. Artinya, untuk sebarang bilangan bulat apabila ditambah 0 (nol), hasilnya adalah bilangan itu sendiri. Hal ini dapat dituliskan bahwa “Untuk sebarang bilangan bulat a, selalu berlaku a + 0 = 0 + a = a.

Sifat Asosiatif (Pengelompokan)

Sifat ini menyatakan bahwa “Untuk setiap bilangan bulat a, b, dan c, berlaku (a + b) + c = a + (b + c).

Untuk lebih memantapkan pemahaman Anda tentang sifat asosiatif (pengelempokan) pada penjumlahan bilangan bulat, silahkan simak contoh soal di bawah ini.

Contoh Soal 3

a.   (3 + (–6)) + 7 = –3 + 7 = 4
=> 3 + ((–6) + 7) = 3 + 1 = 4
Jadi, (3 + (–6)) + 7 = 3 + ((–6) + 7).

b.  (–2 + (–8)) + 12 = –10 + 12 = 2
=>–2 + ((–8) + 12) = –2 + 4 = 2
Jadi, (–2 + (–8)) + 12 = –2 + ((–8) + 12).

Mempunyai invers

Invers suatu bilangan artinya lawan dari bilangan tersebut. Suatu bilangan dikatakan mempunyai invers jumlah, apabila hasil penjumlahan bilangan tersebut dengan inversnya (lawannya) merupakan unsur identitas yaitu 0 (nol). Invers dari a adalah –a, sedangkan invers dari –a adalah a. Dengan kata lain, untuk setiap bilangan bulat selain nol pasti mempunyai invers, sedemikian sehingga berlaku a + (–a) = (–a) + a = 0.

Sumber
http://dadangjsn.blogspot.com/2013/10/materi-pelajaran-matematika-smp-mts.html

Kamis, 16 Oktober 2014

perkalian dan pembagian pecahan

Perkalian pecahan
Cara mengalikan pecahan adalah:
  • Pembilang kali pembilang, penyebut kali penyebut.
  • Sederhanakan untuk mendapatkan hasil yang sederhana.
Contoh:
  • \frac{3}{4}\times\frac{3}{5}=\frac{9}{20}

  • 1\tfrac{2}{3}\times\frac{2}{5}

=\frac{5}{3}\times\frac{2}{5}

=\frac{1}{3}\times\frac{2}{1}

=\frac{2}{3}

Pembagian pecahan

Cara membagi pecahan adalah:
  • Ubahlah ke dalam bentuk perkalian dengan kebalikannya.
  • Lakukan sama seperti perkalian pecahan.
Contoh:
=1\tfrac{3}{4}\div\frac{2}{7}

=\frac{7}{4}\div\frac{2}{7}

=\frac{7x7}{4x2}

=\frac{49}{8}

=1\tfrac{3}{4}

Kamis, 02 Oktober 2014

Subtitusi


Rumus Substitusi




Biasanya sering kali ditemukan dalam pelajaran matematika. Rumus Substitusi ini terdapat dalam materi Sistem Persamaan Linear Dua Variabel. Contoh rumusnya adalah : 2x - 3y = 2, 5x + 2y = 24
Rumus Eliminasi
Rumus ini juga termasuk rumus yang terdapat pada Sistem Persamaan Linear Dua Variabel atau lebih singkatnya disebut dengan sebutan SPLDV. Rumus matematika ini lebih gampang cara penyelesaiannya dibandingkan dengan rumus substitusi yang berada di atas, karena caranya lebih singkat dibandingkan dengan rumus subtitusi yang lebih panjang lagi.
y= 1
Dari Wikipedia 
Rumus Subtitusi adalah rumus yang digunakan dalam ilmu matematika untuk menyelesaikan suatu persoalan dengan cara menggabungkan persamaan-persamaan yang telah diketahui.
Penyelesaian : 2x - 3y = 2, y = (2x - 2) : 3
Penyelesaian
2x - 3y = 2 . 2
4x - 10y= -8 -
4x - 6y = 4
4x - 10y= -8 -
4y = 4
Selain rumus substitusi dan rumus eliminasi dalam Sistem Persamaan Linear Dua Variabel ini, ada juga rumus penyelesaian SPLDV yang lainnya, yaitu rumus grafika. Rumus grafika ini menggunakan himpunan penyelesaian dan memindahkan himpunan penyelesaian tersebut dalam sebuah grafik yang bernama diagram cartesius yang saat ini sering ditemukan dalam profit/bidang pekerjaan kantoran. Dalam memasukkan himpunan penyelesaian kepada diagram cartesius, angka pertama yang berada dalamhimpunan penyelesaiannya harus dimasukkan dulu atau yang sering kita sebut absis (x) kemudian masukkan angka ordinat (y) ke diagram cartesius yang telah dibuat oleh penggaris

Rumus Trigonometri

Trigonometri


 (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segitiga dan fungsi trigonometrik seperti sinuscosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.


Sejarah awal  


Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segitiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.


Konsep Trigonometri


Dasar dari Trigonometri adalah Konsep kesebangunan segitiga siku-siku. Sisi-sisi yang bersesuaian pada dua bangun datar yang sebangun memiliki perbandingan yang sama. Pada geometri Euclid, jika masing-masing sudut pada dua segitiga memiliki besar yang sama, maka kedua segitiga itu pasti sebangun.[1] Hal ini adalah dasar untuk perbandingan trigonometri sudut lancip. Konsep ini lalu dikembangkan lagi untuk sudut-sudut non lancip (lebih dari 90 derajat dan kurang dari nol derajat).Trigonometri sekarang iniAda banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musikakustikoptik, analisis pasar finansial,elektronikteori probabilitasstatistikabiologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasikimiateori angka (dan termasuk kriptologi), seismologi,meteorologioseanografi, berbagai cabang dalam ilmu fisikasurvei darat dan geodesiarsitekturfonetikaekonomiteknik listrikteknik mekanikteknik sipilgrafik komputer,kartografikristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya [1].
Hubungan fungsi trigonometriTrigonometryTriangle.svgFungsi dasar:
sin A = \frac{a}{c}
cos A = \frac{b}{c}
tan A = \frac{sin A}{cos A} = \frac{a}{b}
cot A = \frac{1}{tan A} = \frac{cos A}{sin A} = \frac{b}{a}
sec A = \frac{1}{cos A} = \frac{c}{b}
csc A = \frac{1}{sin A} = \frac{c}{a}

Identitas trigonometri

sin^2 A + cos^2 A = 1
1 + tan^2 A = \frac{1}{cos^2 A} = sec^2 A
1 + cot^2 A = \frac{1}{sin^2 A} = csc^2 A

Rumus jumlah dan selisih sudut

sin (A + B) = sin A cos B + cos A sin B

sin (A - B) = sin A cos B - cos A sin B
cos (A + B) = cos A cos B - sin A sin B
cos (A - B) = cos A cos B + sin A sin B
tan (A + B) = \frac{tan A + tan B}{1 - tan A tan B}
tan (A - B) = \frac{tan A - tan B}{1 + tan A tan B}

Rumus perkalian

 2 sin A cos B = sin (A + B) + sin (A - B)
2 cos A sin B = sin (A + B) - sin (A - B)
2 cos A cos B = cos (A + B) + cos (A - B)
2 sin A sin B = - cos (A + B) + cos (A - B)

Rumus jumlah dan selisih trigonometri


sin A - sin B = 2 cos \frac{1}{2} (A + B) sin \frac{1}{2} (A - B)
cos A + cos B = 2 cos \frac{1}{2} (A + B) cos \frac{1}{2} (A - B)
- cos A +  cos B = 2 sin \frac{1}{2} (A + B) sin \frac{1}{2} (A - B)

Rumus sudut rangkap dua

sin 2A = 2 sin A cos A
cos 2A = cos^2 A - sin^2 A   
            = 1 - 2 sin^2 A 
            = 2 cos^2 A - 1
tan 2A = \frac{2 tan A}{1 - tan^2 A} = \frac{2 cot A}{cot^2 A - 1} = \frac{2}{cot A - tan A}

Rumus sudut rangkap tiga

sin 3A = 3 sin A - 4 sin^3 A
cos 3A = 4 cos^3 A - 3 cos A

Rumus setengah sudut


cos \frac{A}{2} = \pm \sqrt{\frac{1+cos A}{2}}
tan \frac{A}{2} = \pm \sqrt{\frac{1-cos A}{1+cosA}} = \frac {sin A}{1+cos A} = \frac {1-cos A}{sin A}

x